
Data clustering method in AI 

 

Clustering is a Machine Learning technique that involves the 

grouping of data points. Given a set of data points, we can use a 

clustering algorithm to classify each data point into a specific 

group. In theory, data points that are in the same group should 

have similar properties and/or features, while data points in 

different groups should have highly dissimilar properties and/or 

features. Clustering is a method of unsupervised learning and is 

a common technique for statistical data analysis used in many 

fields. 

In Data Science, we can use clustering analysis to gain some 

valuable insights from our data by seeing what groups the data 

points fall into when we apply a clustering algorithm. Today, 

we’re going to look at 5 popular clustering algorithms that data 

scientists need to know and their pros and cons! 

K-Means Clustering 

K-Means is probably the most well-known clustering 

algorithm. It’s taught in a lot of introductory data science and 

machine learning classes. It’s easy to understand and implement 

in code! Check out the graphic below for an illustration. 
 



 

K-Means Clustering 

1. To begin, we first select a number of classes/groups to 

use and randomly initialize their respective center points. To 

figure out the number of classes to use, it’s good to take a 

quick look at the data and try to identify any distinct 

groupings. The center points are vectors of the same length 

as each data point vector and are the “X’s” in the graphic 

above. 

2. Each data point is classified by computing the distance 

between that point and each group center, and then 

classifying the point to be in the group whose center is closest 

to it. 



3. Based on these classified points, we recompute the 

group center by taking the mean of all the vectors in the 

group. 

4. Repeat these steps for a set number of iterations or 

until the group centers don’t change much between 

iterations. You can also opt to randomly initialize the group 

centers a few times, and then select the run that looks like it 

provided the best results. 

K-Means has the advantage that it’s pretty fast, as all we’re 

really doing is computing the distances between points and 

group centers; very few computations! It thus has a linear 

complexity O(n). 

On the other hand, K-Means has a couple of disadvantages. 

Firstly, you have to select how many groups/classes there are. 

This isn’t always trivial and ideally with a clustering algorithm 

we’d want it to figure those out for us because the point of it is to 

gain some insight from the data. K-means also starts with a 

random choice of cluster centers and therefore it may yield 

different clustering results on different runs of the algorithm. 

Thus, the results may not be repeatable and lack consistency. 

Other cluster methods are more consistent. 

K-Medians is another clustering algorithm related to K-

Means, except instead of recomputing the group center points 

using the mean we use the median vector of the group. This 

method is less sensitive to outliers (because of using the 



Median) but is much slower for larger datasets as sorting is 

required on each iteration when computing the Median vector. 

Mean-Shift Clustering 

Mean shift clustering is a sliding-window-based algorithm 

that attempts to find dense areas of data points. It is a centroid-

based algorithm meaning that the goal is to locate the center 

points of each group/class, which works by updating candidates 

for center points to be the mean of the points within the sliding-

window. These candidate windows are then filtered in a post-

processing stage to eliminate near-duplicates, forming the final 

set of center points and their corresponding groups. Check out 

the graphic below for an illustration. 
 

 

Mean-Shift Clustering for a single sliding window 

1. To explain mean-shift we will consider a set of points 

in two-dimensional space like the above illustration. We 

begin with a circular sliding window centered at a point C 



(randomly selected) and having radius r as the kernel. Mean 

shift is a hill-climbing algorithm that involves shifting this 

kernel iteratively to a higher density region on each step until 

convergence. 

2. At every iteration, the sliding window is shifted 

towards regions of higher density by shifting the center point 

to the mean of the points within the window (hence the 

name). The density within the sliding window is proportional 

to the number of points inside it. Naturally, by shifting to the 

mean of the points in the window it will gradually move 

towards areas of higher point density. 

3. We continue shifting the sliding window according to 

the mean until there is no direction at which a shift can 

accommodate more points inside the kernel. Check out the 

graphic above; we keep moving the circle until we no longer 

are increasing the density (i.e number of points in the 

window). 

4. This process of steps 1 to 3 is done with many sliding 

windows until all points lie within a window. When multiple 

sliding windows overlap the window containing the most 

points is preserved. The data points are then clustered 

according to the sliding window in which they reside. 

An illustration of the entire process from end-to-end with all 

of the sliding windows is shown below. Each black dot 

represents the centroid of a sliding window and each gray dot is 

a data point. 
 



 

The entire process of Mean-Shift Clustering 

In contrast to K-means clustering, there is no need to select 

the number of clusters as mean-shift automatically discovers 

this. That’s a massive advantage. The fact that the cluster centers 

converge towards the points of maximum density is also quite 

desirable as it is quite intuitive to understand and fits well in a 

naturally data-driven sense. The drawback is that the selection 

of the window size/radius “r” can be non-trivial. 

Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) 

DBSCAN is a density-based clustered algorithm similar to 

mean-shift, but with a couple of notable advantages. Check out 

another fancy graphic below and let’s get started! 
 



 

DBSCAN Smiley Face Clustering 

1. DBSCAN begins with an arbitrary starting data point 

that has not been visited. The neighborhood of this point is 

extracted using a distance epsilon ε (All points which are 

within the ε distance are neighborhood points). 

2. If there are a sufficient number of points (according to 

minPoints) within this neighborhood then the clustering 

process starts and the current data point becomes the first 

point in the new cluster. Otherwise, the point will be labeled 

as noise (later this noisy point might become the part of the 

cluster). In both cases that point is marked as “visited”. 

3. For this first point in the new cluster, the points 

within its ε distance neighborhood also become part of the 

same cluster. This procedure of making all points in the ε 

neighborhood belong to the same cluster is then repeated for 



all of the new points that have been just added to the cluster 

group. 

4. This process of steps 2 and 3 is repeated until all 

points in the cluster are determined i.e all points within the ε 

neighborhood of the cluster have been visited and labeled. 

5. Once we’re done with the current cluster, a new 

unvisited point is retrieved and processed, leading to the 

discovery of a further cluster or noise. This process repeats 

until all points are marked as visited. Since at the end of this 

all points have been visited, each point will have been 

marked as either belonging to a cluster or being noise. 

DBSCAN poses some great advantages over other clustering 

algorithms. Firstly, it does not require a pe-set number of 

clusters at all. It also identifies outliers as noises, unlike mean-

shift which simply throws them into a cluster even if the data 

point is very different. Additionally, it can find arbitrarily sized 

and arbitrarily shaped clusters quite well. 

The main drawback of DBSCAN is that it doesn’t perform as 

well as others when the clusters are of varying density. This is 

because the setting of the distance threshold ε and minPoints for 

identifying the neighborhood points will vary from cluster to 

cluster when the density varies. This drawback also occurs with 

very high-dimensional data since again the distance threshold ε 

becomes challenging to estimate. 



Expectation–Maximization (EM) Clustering using 

Gaussian Mixture Models (GMM) 

One of the major drawbacks of K-Means is its naive use of the 

mean value for the cluster center. We can see why this isn’t the 

best way of doing things by looking at the image below. On the 

left-hand side, it looks quite obvious to the human eye that there 

are two circular clusters with different radius’ centered at the 

same mean. K-Means can’t handle this because the mean values 

of the clusters are very close together. K-Means also fails in 

cases where the clusters are not circular, again as a result of 

using the mean as cluster center. 

 

 

Two failure cases for K-Means 

Gaussian Mixture Models (GMMs) give us more flexibility 

than K-Means. With GMMs we assume that the data points are 

Gaussian distributed; this is a less restrictive assumption than 

saying they are circular by using the mean. That way, we have 



two parameters to describe the shape of the clusters: the mean 

and the standard deviation! Taking an example in two 

dimensions, this means that the clusters can take any kind of 

elliptical shape (since we have a standard deviation in both the x 

and y directions). Thus, each Gaussian distribution is assigned 

to a single cluster. 

To find the parameters of the Gaussian for each cluster (e.g 

the mean and standard deviation), we will use an optimization 

algorithm called Expectation–Maximization (EM). Take a look 

at the graphic below as an illustration of the Gaussians being 

fitted to the clusters. Then we can proceed with the process of 

Expectation–Maximization clustering using GMMs. 
 

 

EM Clustering using GMMs 

1. We begin by selecting the number of clusters (like K-

Means does) and randomly initializing the Gaussian 

distribution parameters for each cluster. One can try to 

provide a good guesstimate for the initial parameters by 



taking a quick look at the data too. Though note, as can be 

seen in the graphic above, this isn’t 100% necessary as the 

Gaussians start our as very poor but are quickly optimized. 

2. Given these Gaussian distributions for each cluster, 

compute the probability that each data point belongs to a 

particular cluster. The closer a point is to the Gaussian’s 

center, the more likely it belongs to that cluster. This should 

make intuitive sense since with a Gaussian distribution we 

are assuming that most of the data lies closer to the center of 

the cluster. 

3. Based on these probabilities, we compute a new set of 

parameters for the Gaussian distributions such that we 

maximize the probabilities of data points within the clusters. 

We compute these new parameters using a weighted sum of 

the data point positions, where the weights are the 

probabilities of the data point belonging in that particular 

cluster. To explain this visually we can take a look at the 

graphic above, in particular the yellow cluster as an example. 

The distribution starts off randomly on the first iteration, but 

we can see that most of the yellow points are to the right of 

that distribution. When we compute a sum weighted by the 

probabilities, even though there are some points near the 

center, most of them are on the right. Thus naturally the 

distribution’s mean is shifted closer to those set of points. We 

can also see that most of the points are “top-right to bottom-

left”. Therefore the standard deviation changes to create an 

ellipse that is more fitted to these points, to maximize the 

sum weighted by the probabilities. 



4. Steps 2 and 3 are repeated iteratively until 

convergence, where the distributions don’t change much 

from iteration to iteration. 

There are 2 key advantages to using GMMs. Firstly GMMs are 

a lot more flexible in terms of cluster covariance than K-

Means; due to the standard deviation parameter, the clusters 

can take on any ellipse shape, rather than being restricted to 

circles. K-Means is actually a special case of GMM in which each 

cluster’s covariance along all dimensions approaches 0. 

Secondly, since GMMs use probabilities, they can have multiple 

clusters per data point. So if a data point is in the middle of two 

overlapping clusters, we can simply define its class by saying it 

belongs X-percent to class 1 and Y-percent to class 2. I.e GMMs 

support mixed membership. 

Agglomerative Hierarchical Clustering 

Hierarchical clustering algorithms fall into 2 categories: top-

down or bottom-up. Bottom-up algorithms treat each data point 

as a single cluster at the outset and then successively merge 

(or agglomerate) pairs of clusters until all clusters have been 

merged into a single cluster that contains all data points. 

Bottom-up hierarchical clustering is therefore 

called hierarchical agglomerative clustering or HAC. This 

hierarchy of clusters is represented as a tree (or dendrogram). 

The root of the tree is the unique cluster that gathers all the 

samples, the leaves being the clusters with only one sample. 

Check out the graphic below for an illustration before moving on 

to the algorithm steps 



 

 

Agglomerative Hierarchical Clustering 

1. We begin by treating each data point as a single 

cluster i.e if there are X data points in our dataset then we 

have X clusters. We then select a distance metric that 

measures the distance between two clusters. As an example, 

we will use average linkage which defines the distance 

between two clusters to be the average distance between data 

points in the first cluster and data points in the second 

cluster. 

2. On each iteration, we combine two clusters into one. 

The two clusters to be combined are selected as those with 

the smallest average linkage. I.e according to our selected 

distance metric, these two clusters have the smallest distance 

between each other and therefore are the most similar and 

should be combined. 

3. Step 2 is repeated until we reach the root of the tree i.e 

we only have one cluster which contains all data points. In 

this way we can select how many clusters we want in the end, 



simply by choosing when to stop combining the clusters i.e 

when we stop building the tree! 

Hierarchical clustering does not require us to specify the 

number of clusters and we can even select which number of 

clusters looks best since we are building a tree. Additionally, the 

algorithm is not sensitive to the choice of distance metric; all of 

them tend to work equally well whereas with other clustering 

algorithms, the choice of distance metric is critical. A 

particularly good use case of hierarchical clustering methods is 

when the underlying data has a hierarchical structure and you 

want to recover the hierarchy; other clustering algorithms can’t 

do this. These advantages of hierarchical clustering come at the 

cost of lower efficiency, as it has a time complexity of O(n³), 

unlike the linear complexity of K-Means and GMM. 
 


