Data clustering method in Al

Clustering is a Machine Learning technique that involves the
grouping of data points. Given a set of data points, we can use a
clustering algorithm to classify each data point into a specific
group. In theory, data points that are in the same group should
have similar properties and/or features, while data points in
different groups should have highly dissimilar properties and/or
features. Clustering is a method of unsupervised learning and is

a common technique for statistical data analysis used in many
fields.

In Data Science, we can use clustering analysis to gain some
valuable insights from our data by seeing what groups the data
points fall into when we apply a clustering algorithm. Today,
we’re going to look at 5 popular clustering algorithms that data
scientists need to know and their pros and cons!

K-Means Clustering

K-Means is probably the most well-known clustering
algorithm. It’s taught in a lot of introductory data science and
machine learning classes. It’s easy to understand and implement
in code! Check out the graphic below for an illustration.

o
o
e 's] o
-
o 5 &
[=
oo
o
=y +]
= 0% g o
—
o o om
%c%,ﬁ
(o]
5 oﬂ% §° “
= wr | o O
o
c = o @ © & o
& Q.
E o o o & Yo o
© 8 k; ® o O g
4] o o o O
= a o °
=] N (8] o 's] 80 o
o% o O o a @
Q °<>G a] o o.ac‘ o
o g 0%3
o a
=
o o
o
T T T I T
2 -1 0 1 2
dimension 1

K-Means Clustering

1. To begin, we first select a number of classes/groups to
use and randomly initialize their respective center points. To
figure out the number of classes to use, it’s good to take a
quick look at the data and try to identify any distinct
groupings. The center points are vectors of the same length
as each data point vector and are the “X’s” in the graphic
above.

2. Each data point is classified by computing the distance
between that point and each group center, and then
classifying the point to be in the group whose center is closest
to it.

3. Based on these classified points, we recompute the
group center by taking the mean of all the vectors in the

group.

4. Repeat these steps for a set number of iterations or
until the group centers don’t change much between
iterations. You can also opt to randomly initialize the group
centers a few times, and then select the run that looks like it
provided the best results.

K-Means has the advantage that it’s pretty fast, as all we're
really doing is computing the distances between points and
group centers; very few computations! It thus has a linear
complexity O(n).

On the other hand, K-Means has a couple of disadvantages.
Firstly, you have to select how many groups/classes there are.
This isn’t always trivial and ideally with a clustering algorithm
we’d want it to figure those out for us because the point of it is to
gain some insight from the data. K-means also starts with a
random choice of cluster centers and therefore it may yield
different clustering results on different runs of the algorithm.
Thus, the results may not be repeatable and lack consistency.
Other cluster methods are more consistent.

K-Medians is another clustering algorithm related to K-
Means, except instead of recomputing the group center points
using the mean we use the median vector of the group. This
method is less sensitive to outliers (because of using the

Median) but is much slower for larger datasets as sorting is
required on each iteration when computing the Median vector.

Mean-Shift Clustering

Mean shift clustering is a sliding-window-based algorithm
that attempts to find dense areas of data points. It is a centroid-
based algorithm meaning that the goal is to locate the center
points of each group/class, which works by updating candidates
for center points to be the mean of the points within the sliding-
window. These candidate windows are then filtered in a post-
processing stage to eliminate near-duplicates, forming the final
set of center points and their corresponding groups. Check out
the graphic below for an illustration.

. '! .
. '-':- ::- iy
AT T AT
AR L A
o Caa Mo RN n gkt
0?* =rﬁ‘. ‘ ‘l‘:n I- .
. :‘ o :‘.'1‘.‘ 'L -:..Q.:::':)
' entar % *) ."-- ‘
Yy P
R P s T

Mean-Shift Clustering for a single sliding window

1. To explain mean-shift we will consider a set of points
in two-dimensional space like the above illustration. We
begin with a circular sliding window centered at a point C

(randomly selected) and having radius r as the kernel. Mean
shift is a hill-climbing algorithm that involves shifting this
kernel iteratively to a higher density region on each step until
convergence.

2. At every iteration, the sliding window is shifted
towards regions of higher density by shifting the center point
to the mean of the points within the window (hence the
name). The density within the sliding window is proportional
to the number of points inside it. Naturally, by shifting to the
mean of the points in the window it will gradually move
towards areas of higher point density.

3. We continue shifting the sliding window according to
the mean until there is no direction at which a shift can
accommodate more points inside the kernel. Check out the
graphic above; we keep moving the circle until we no longer
are increasing the density (i.e number of points in the
window).

4. This process of steps 1 to 3 is done with many sliding
windows until all points lie within a window. When multiple
sliding windows overlap the window containing the most
points is preserved. The data points are then clustered
according to the sliding window in which they reside.

An illustration of the entire process from end-to-end with all
of the sliding windows is shown below. Each black dot
represents the centroid of a sliding window and each gray dot is
a data point.

The entire process of Mean-Shift Clustering

In contrast to K-means clustering, there is no need to select
the number of clusters as mean-shift automatically discovers
this. That’s a massive advantage. The fact that the cluster centers
converge towards the points of maximum density is also quite
desirable as it is quite intuitive to understand and fits well in a
naturally data-driven sense. The drawback is that the selection
of the window size/radius “r” can be non-trivial.

Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)

DBSCAN is a density-based clustered algorithm similar to
mean-shift, but with a couple of notable advantages. Check out
another fancy graphic below and let’s get started!

D‘E -
Y o %4 o © L]
. gﬂﬂ B@bjm &U@ F%mu
of:’rg o W ﬁ%% o %:Zu
%{_& o oﬁo
%ﬁ% E‘Dgﬁo o
epsilon =1.00 I Y) a
mpi.n Points = 4 OS5 80 Yo
U 0
Restart Pause

DBSCAN Smiley Face Clustering

1. DBSCAN begins with an arbitrary starting data point
that has not been visited. The neighborhood of this point is
extracted using a distance epsilon ¢ (All points which are
within the € distance are neighborhood points).

2. If there are a sufficient number of points (according to
minPoints) within this neighborhood then the clustering
process starts and the current data point becomes the first
point in the new cluster. Otherwise, the point will be labeled
as noise (later this noisy point might become the part of the
cluster). In both cases that point is marked as “visited”.

3. For this first point in the new cluster, the points
within its € distance neighborhood also become part of the
same cluster. This procedure of making all points in the
neighborhood belong to the same cluster is then repeated for

all of the new points that have been just added to the cluster
group.

4. This process of steps 2 and 3 is repeated until all
points in the cluster are determined i.e all points within the
neighborhood of the cluster have been visited and labeled.

5. Once we're done with the current cluster, a new
unvisited point is retrieved and processed, leading to the
discovery of a further cluster or noise. This process repeats
until all points are marked as visited. Since at the end of this
all points have been visited, each point will have been
marked as either belonging to a cluster or being noise.

DBSCAN poses some great advantages over other clustering
algorithms. Firstly, it does not require a pe-set number of
clusters at all. It also identifies outliers as noises, unlike mean-
shift which simply throws them into a cluster even if the data
point is very different. Additionally, it can find arbitrarily sized
and arbitrarily shaped clusters quite well.

The main drawback of DBSCAN is that it doesn’t perform as
well as others when the clusters are of varying density. This is
because the setting of the distance threshold € and minPoints for
identifying the neighborhood points will vary from cluster to
cluster when the density varies. This drawback also occurs with
very high-dimensional data since again the distance threshold ¢
becomes challenging to estimate.

Expectation—-Maximization (EM) Clustering using
Gaussian Mixture Models (GMM)

One of the major drawbacks of K-Means is its naive use of the
mean value for the cluster center. We can see why this isn’t the
best way of doing things by looking at the image below. On the
left-hand side, it looks quite obvious to the human eye that there
are two circular clusters with different radius’ centered at the
same mean. K-Means can’t handle this because the mean values
of the clusters are very close together. K-Means also fails in
cases where the clusters are not circular, again as a result of
using the mean as cluster center.

Two failure cases for K-Means

Gaussian Mixture Models (GMMs) give us more flexibility
than K-Means. With GMMs we assume that the data points are
Gaussian distributed; this is a less restrictive assumption than
saying they are circular by using the mean. That way, we have

two parameters to describe the shape of the clusters: the mean
and the standard deviation! Taking an example in two
dimensions, this means that the clusters can take any kind of
elliptical shape (since we have a standard deviation in both the x
and y directions). Thus, each Gaussian distribution is assigned
to a single cluster.

To find the parameters of the Gaussian for each cluster (e.g
the mean and standard deviation), we will use an optimization
algorithm called Expectation—Maximization (EM). Take a look
at the graphic below as an illustration of the Gaussians being
fitted to the clusters. Then we can proceed with the process of
Expectation—Maximization clustering using GMMs.

Delay
o070

50 1
ED
0) . H
g0 | e

0T i TR

40 ¢ + + ! Duration
1 2 2 4 5 4

EM Clustering using GMMs

1. We begin by selecting the number of clusters (like K-
Means does) and randomly initializing the Gaussian
distribution parameters for each cluster. One can try to
provide a good guesstimate for the initial parameters by

taking a quick look at the data too. Though note, as can be
seen in the graphic above, this isn’t 100% necessary as the
Gaussians start our as very poor but are quickly optimized.

2. Given these Gaussian distributions for each cluster,
compute the probability that each data point belongs to a
particular cluster. The closer a point is to the Gaussian’s
center, the more likely it belongs to that cluster. This should
make intuitive sense since with a Gaussian distribution we
are assuming that most of the data lies closer to the center of
the cluster.

3. Based on these probabilities, we compute a new set of
parameters for the Gaussian distributions such that we
maximize the probabilities of data points within the clusters.
We compute these new parameters using a weighted sum of
the data point positions, where the weights are the
probabilities of the data point belonging in that particular
cluster. To explain this visually we can take a look at the
graphic above, in particular the yellow cluster as an example.
The distribution starts off randomly on the first iteration, but
we can see that most of the yellow points are to the right of
that distribution. When we compute a sum weighted by the
probabilities, even though there are some points near the
center, most of them are on the right. Thus naturally the
distribution’s mean is shifted closer to those set of points. We
can also see that most of the points are “top-right to bottom-
left”. Therefore the standard deviation changes to create an
ellipse that is more fitted to these points, to maximize the
sum weighted by the probabilities.

4. Steps 2 and 3 are repeated iteratively until
convergence, where the distributions don’t change much
from iteration to iteration.

There are 2 key advantages to using GMMs. Firstly GMMs are
a lot more flexible in terms of cluster covariance than K-
Means; due to the standard deviation parameter, the clusters
can take on any ellipse shape, rather than being restricted to
circles. K-Means is actually a special case of GMM in which each
cluster’s covariance along all dimensions approaches o.
Secondly, since GMMs use probabilities, they can have multiple
clusters per data point. So if a data point is in the middle of two
overlapping clusters, we can simply define its class by saying it
belongs X-percent to class 1 and Y-percent to class 2. I.e GMMs
support mixed membership.

Agglomerative Hierarchical Clustering

Hierarchical clustering algorithms fall into 2 categories: top-
down or bottom-up. Bottom-up algorithms treat each data point
as a single cluster at the outset and then successively merge
(or agglomerate) pairs of clusters until all clusters have been
merged into a single cluster that contains all data points.
Bottom-up hierarchical clustering is therefore
called hierarchical agglomerative clustering or HAC. This
hierarchy of clusters is represented as a tree (or dendrogram).
The root of the tree is the unique cluster that gathers all the
samples, the leaves being the clusters with only one sample.
Check out the graphic below for an illustration before moving on
to the algorithm steps

Hierarchical Clustering Dendrogram

=Y
T

p5

=
£
Euclidean Distance

1
2t B p3

] 1 2 3 4 5 & 7 B [lu] pl p2 3 pd [a=] pe
Sample Index

Agglomerative Hierarchical Clustering

1. We begin by treating each data point as a single
cluster i.e if there are X data points in our dataset then we
have X clusters. We then select a distance metric that
measures the distance between two clusters. As an example,
we will use average linkage which defines the distance
between two clusters to be the average distance between data
points in the first cluster and data points in the second
cluster.

2. On each iteration, we combine two clusters into one.
The two clusters to be combined are selected as those with
the smallest average linkage. I.e according to our selected
distance metric, these two clusters have the smallest distance
between each other and therefore are the most similar and
should be combined.

3. Step 2 is repeated until we reach the root of the tree i.e
we only have one cluster which contains all data points. In
this way we can select how many clusters we want in the end,

simply by choosing when to stop combining the clusters i.e
when we stop building the tree!

Hierarchical clustering does not require us to specify the
number of clusters and we can even select which number of
clusters looks best since we are building a tree. Additionally, the
algorithm is not sensitive to the choice of distance metric; all of
them tend to work equally well whereas with other clustering
algorithms, the choice of distance metric is critical. A
particularly good use case of hierarchical clustering methods is
when the underlying data has a hierarchical structure and you
want to recover the hierarchy; other clustering algorithms can’t
do this. These advantages of hierarchical clustering come at the
cost of lower efficiency, as it has a time complexity of O(n3),
unlike the linear complexity of K-Means and GMM.

